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Abstract

The first and second-order density matrices for a uniform

electron gas are discussed in the limiting cases of weak coupling

(usual gas parameter r5 -+ 0) and strong coupling (rs a +).

Attention is focussed on the important pair distribution function

and on the momentum distribution. If the high density form of

the momentum distribution as given by Daniel and Vosko (1960)

is adopted, then conclusions can be drawn regarding the meaning

of a Fermi surface in a system of interacting particles.

However, the applicability of perturbation theory to the

calculation of the momentum distribution is thrown into some

doubt by a calculation we have carried out on a soluble

problem. Here we find that the perturbative answer is not

correct, but unfortunately the problem, that of non-interacting

electrons in a magnetic field, is very different physically

from the Coulomb correlation case. Further work therefore

remains to be done on this point.

Variational forms of second-order density matrices are

discussed, and the Euler equations are obtained for one

possible scheme based on localized orbitals.

Finally, some progress on the non-uniform gas is briefly

reported.
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1. Introduction

The problem of dealing with the Coulomb interactions

between conduction electrons in metals has proved vera formidable

and no complete solution has, as yet, been found. In recent

years, beginning with the important investigation of Macke

(1950), attention has been focussed primarily on the use of

perturbation theory. Unfortunately, the perturbation expansion

does not prove useful in practice in the range of real metallic

densities, which are characterized by the usual gas parameter

r5 lying in the range 2 < ra < 5"5.

In this report, we consider chiefly methods based on a

variational approach to the correlation problem, although

considerable use is made of results obtained in the limiting

cases of weak (rs -# O) and strong (ra -+ co) coupling.

Certain very important questions connected with the meaning

of a Fermi surface in a system of strongly interacting particles

are not finally answered, but some light is thrown on the

general problem in sections 2 and 3 of the Report.

While most of the work has been concerned with the uniform

electron gas, some progress on the non-uniform problem is

described in section 6. Here, a good deal of work remains to be

carried out.

We should mention that our earlier work on spin density

waves has not been included in this Report, because, after our



variational calculations were coupleted more powerful nethods

were developed by Overhauser and our evn work Is therefore at

most, of historical interest.
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2. Coulomb correlations in a uniform electron aas

We discuss first the role of electron interactions in a

uniform system. Throughout, we shall focus attention on density

matrices, and in sections 2.2 and 2.3 we present results in the

Sommerfeld model which are valid for the limiting cases of low

and high density respectively. Some inferences concerning the

Fermi surface are drawn in section 2.4, but no completely final

result on the change in the momentum distribution as the

interaction strength is varied can be obtained, as some doubts

exist as to the validity of perturbation theory in calculating

this quantity. Some examination of this point is carried out

in section 3 therefore.
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2.1 The Hamiltonian and definitions of density matrices for uniform

electron &as

We require basically to calculate the ground-state wave

function *(xx2....XN) for a system of N electrons, where xi

denotaA the space co-ordinates ri and spin co-ordinates Oi,

from the Schr~dinger equation

H* - C*. (21.1)

We adopt as the Hamiltonian of the Sommerfeld model:

N 2N r
H = - * jv +t - 1T Iri-..roI +

+ i V) 11iro-ri ' (2.1.2)

where the last two terms in (2.1.2) refer to the electron-positive

background interaction and the background self-energy,

respectively. We now define first and second-order spinless

density matrices y(r1 ' r,) and r(r1 ' r2' r, r2) by the equations

y(r, r,) = N *(r'ojx...xN)*(rjojx...xC)dodx,...dNp, (2.1.3)

r(r, 'r'r,r2 ) N(N-1 ) f (r' 'olraeoax''xN,*(rlO'r2O2x 'xxN)

do1 do, dx3...dxN. (2.1.4)

We note now that the diagonal elements of y and r have direct

physical interpretations. Thus y(r, r1 ) gives the particle

density, which in the Sommerfeld model is simply the constant
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3/4,xe, while rkrzvqrjr*) Is effectively the probability of

electron separation or the pair distribution function. Then,

as Mayer (1955) was the first to show, the energy per particle

e/N is given by

- ~ [V'rT(r',r)Jr r- ~ ( F(r.))lrdr. (2.1.5)

where F(r) = P(Ir'-rI) is the pair function, normalized to unity

for large Irl-ri

Since we shall utilize the results later, we note that the

usual Hartree-Fock solution based on a determinant of plane

waves yields the forms:

y(r'r) - kf3 - r - : .(p) .(sin p - p Cos p)/p"

(2.1.6.,)

and is related to the mean interparticle spacing by

kr 5 = .0 (2.1.7)

Using atomic units, it follows from (2.1.5) and (2.1.6) that the

energy per particle is

1=6 ~) ~ ~ r- (2.1.8)



2.2Pair function and first-order matrix iQ low-density limit

The low-density form of the pair function has been discussed

earlier by March and Young (1959) using the electron lattice

model of Wigner (1938). We simply summarize the results by

saying that as r becomes very large, the electrons relative

to a given particle we have singled out, and placed at the

origin of co-ordinates sit on the sites of a body-oentred cubic

lattice. As ra is then reduced somewhat, the electrons can be

thought of as represented by harmonic oscillator functions

r r21\ ~ 4 .:exp a = r (2.2.1)

The results obtained by March and Young (1959) for the pair

function are represented in curves i and 2 of Fig. 1, for cases

r = 100 and re = 4. For comparison, the Fermi hole result

given in (2.1.6) is also shown in curve 3. We emphasize that

while curve 1 should be reliable, curve 2 represents an

extrapolation beyend the range of validity ef the low density

form (2.2.1), and is given solely to show the qualitative influence

of varying ra.

We shall now indicate how this work may be generalized to

yield the first-order density matrix and momentum distribution

for a low-density gas. From the orbitals (2.2.1), centred on

each lattice site, we build a Dirac density matrix. This will

not of course, contain the condition of translational invariance,

6
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that is the diagonal element will not be a constant. To obtain

a result consistent with the Sommerfeld model we must average

over all positions, and then the desired first-order density

matrix is easily shown to be

yr(r'r) i=s exp lr is.a (2.2.2)

The form (2.2.2) as is easily seen, satisfies all the essential

conditions, but its range of validity is, of course, restricted,

as we shall discuss below. Nevertheless, in conjunction with

the high density results of §2.3, it may be used to draw some

interesting conclusions about the Ferai surface (see §2.4).

At this stage, it is enlightening to examine the momentum

distribution corresponding to the first-order matrix (2.2.2), and

this may be found as follows. We require the occupation numbers

P(k) of plane wave states V 4 e- ikorp where V is the volume of the

metal and thus we write

y(r'r) - P(k)e - i k . r lek ' , (2.2.3)

k

or remembering that the density of states in k is (1/8%3) V and

using Bauer's expansion for a plane wave as a series of spherical

waves:

y(r'r) M dr f P(k) kir"-r i  4%rk mdk. (2.2.4)

It is convenient at this point to measure k in units of the Fermi

8



momentum kf, that is we write K = k/k., and then (2.2.4) becomesk 3 sin kf Kjr'-r, K2 M (2.2.5)

yir'r) - P(K) Krr K

Inverting this relation and using (2.2.2) for y(r'r) we find

P(K) - exp -() 'J(.26

where we have eliminated kf using (2.1.7). As we have remarked

earlier, the range of validity of (2.2.6) is restricted, beeause

the orbitals * on different lattice sites have been assumed

orthogonal, whereas this is only rigorously true in the limit

ra -0 . However, a rough estimate of the range of validity

may be obtained by noting that the occupation numbers P(K)

must always lie between 0 and 1. Since P(K) as given by (2.246)

has its maximum at K = 0, we must have that

N5 < I(2.2.7)

or
r a> 9"3-

The kinetic energy per particle, in the approximation implied

by (2.2.6), is easily shown to be

II

in agreement with Wigner (1938). Later treatments based on more
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careful study or the dynamics of the vibrating electron lattice

(Coldwell-Horsfall and Maradudin, 1960; Carr, 1961) change (2.2.8)

somewhat, but will not affect the overall validity of the

argument presented above. We note finally for the low-density

limit, that the momentum distribution in a classical 'Maxwell-

Boltzmann form: this is in sharp contrast to the high density

results to which we now turn.

2.3 Pair function and first-order density matrix in high-denoitr

limit

Using the perturbation theory of Gell-Vann and Brueckner

(1957) in suitable form, we shall now discuss the way in which

the pair function and the first-order density matrix develop

from the Hartree-Pock forms given in §2.1 equation (2.1.6). In

order to do so, it is very convenient to introduce a generalization

of density matrices to include also the time: this will greatly

facilitate the setting up of useful equations from which the

matrices can be determined. As a simple example, let us

consider the Dirac first order density matrix for a system

described by a single Slater determinant formed from one-body

orbitals *i(r). This may be written

y(r'r) ir'(2.3.1)
i

where the summation Is over the occupied energy states. However,

10



if we now introduce a generalized first-order density matrix

y(r't'rt) = I(r )i(r)e - iz  i  (23.2)

where B are the occupied energy levels, then this is easily

shown to satisfy the equation

t t, (2.3.3)

and this may be used to calculate y. But in fact, the above

time-dependent matrix, is a special case of the one-particle

Green's function used by the field theorists in their approach

to the many-body problem (see, for example, Klein and Prange,

(1958)).

Indeed, the convenient way to make the connection is now

to start out from the definition of the Green's functions and

the equations which they satisfy. The Green's functions or

propagators are suitably defined matrix elements of Heisenberg

field operators taken between exact eigenstates of the system.

Following Klein and Prange we may write the one-particle and

two-particle Green's functions as

G(xx') - I < N Tj*(x) #*(x')I N > (2.3.4)

and

G(xx2x3xg.) -. i < N Tj *(x,)t(x2)0(x4 )*"(x)1 N >, (2.3.5)

where T is the time ordering operator of Wick. Then if we denote

11



the particle interaction by v(r1t) we have the fellowing equation

for G(x, x')

V2 + Ot) G(x,x') - £ f d3r'v(r-r)G(rmtrt,r't'r't)-64 (x-x,)

(2.3.6)

and this reduces to (2.3.3) when the interaction is neglected.

Also we have

G(xgx2x 3X.) - G(xx3)G(x2x 4 ) - G(xx,)G(x2x3) +

+ Id'y, dy 2 d', d-a G(xy,)G(xay2 )I(yIy,, 1 2 )G(z,ZX 3 X4>.

(2.3.7)

Here I is a complicated interaction operator, which depends on

the Green's functions and therefore to obtain exact solutions

seems out of the question. However, as we discuss below, in

the high density limit it appears possible to make progress in

the electron gas problem by inserting the first approximation

for G(xIxax2x4) inside the integral, provided we approximate

sufficiently carefully to the interaction operator. By now

writing down the extectation value of the Hamiltonian, we make

the indentification between the Green's functions defined here

and the density matrices of §2.1, and the results may be stated

as follows:

Lt G(r t r' t) = - iy(r' r) (2.3.8)
tt-.t+

and

12



Lt G(r t r' t r,' t' rg' t') - 2r(r1 ' r 2 ' r r'). (2.3.9)tl-t+

Proceeding to the high-density gas problem we make use of the

work of Kanazawa and Watabe (1960), which shows that in the high

density limit we must approximate I by

(YIY2XZ-) 6-(Yr,-ZI) 6'(yg-Z2) iV(yI-Yr), (2.3.10)

where the modified interaction V is given by

V(Y -y2) - v(y,-ya) + J dx dry v(y,-x) Go(x-y)

Go(y-x) V(y-y2). (2.3.11)

Here Go is the first-order Green's fanction in the Hartree-Fock

limit and the form of the effective interaction has been

discussed by Hubbard (1957). Then, in the Gell-Mann-Brueckner

approximation,

G(rtr'trt'r'tg) = Go(rtrtN)Go(r tr'tN) - f Go(rtr't")GO(r'trtff)

- f d'yd+ya Go (rty, )Go (rI ty, )V(yr, gr- )GO(y, rtv)Ge(ur ' t')

t2.3.12)

+ - f dygd'=y, G (rtyq)Go(r' ,)v(y1 -ya)G.(ywrt')Go(ytrt M ),

We attempt at this stage to evaluate the pair function In

the approximation in which we consider the first three terms on

the right-hand side of (2.3.12). The first two terms lead to

the usual Hartree-Fook result given in §2.1. equation (2.1.6),

13
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and we write out only the third term explicitly, called GBG

in what follows. It is most convenient to proceed by Fourier

analysis, and to write

%(,t r' t rt" r' t') . a d iq.(rrGB)%G(qt-t)

(2.3.13)

If we Fourier transform V and Go, then the result may be written

GBGq) - k de k' de' d, Go(k*)GO(k-qe-w)

V(qw)Go(k'' )Go(k-qe'+w). (2.3.14)

Introducing the function

Qo( qw) - z/ d3 k Jde Go(q+ks+w)Go(ke) (2.3.15)

as in Dubois (1959) we may simplify (2.3.14) to read

GM(q) - dv q.w -O~j - * (2.3.16)

Numerical evaluation of this correction to the Hartree-Fock pair

finotton is now in progress.

The methad Just described may also be applied to the first

order Green's function to yield the first-order density matrix.

Results essentially equivalent to the momentum distribution of

Daniel and Vooke are then obtained.

14



2.4 The meaning of a Fermi surface

The fact that we can obtain the momentum distribution in

two limiting cases has interesting implications. For, as the

work of Daniel and Vosko shows, the discontinuity in P(K) at

the Fermi surface for re = 0 is not removed but only reduced

as the density is lowered. While this result seems not to

have been established rigorously outside perturbation theory,

there seems strong empirical evidence from the sharpness of

the Fermi surface in real metals that such a discontinuity does

in fact persist. However, our low density treatment ra -+ c

could equally be made the basis of a perturbation treatment,

and no sian of the discontinuity would then occur. Thus, the

evidence seems clear that as we follow the momentum distribution

as it develops from the two limiting cases of small and large

re there must come a critical coupling strength, or a critical

density, at which the discontinuity in the momentum distribution

is reduced to zero. For lower densities, it then appears that

the concept of a Fermi surface will no longer be useful. We

believe at present that the critical value, rc say, will lie

outside the range of real metallic densities, or in other words

that rc will exceed 5"5. No quantitative evaluation has so far

proved possible however. Questions also remain as to the nature

and order of the 'transition' occurring at re.  We do not Axpect

that the pair function will undergo any marked changes at re and

15



Pik)

7 16

Fi.2. M o tU ditibutin in so electv* gas

F ig e 1 D A I EI L a n d Y O S Ki r e u t fe o r o

Cuv .Low densilty form for 75 1

'Cur", 3. Low density formI orr

16



probably, to obtain a clear picture of the transition, it will

eventually prove necessary to examine the third and higher-

order density matrices.

Finally, to give an indication of the change in the

momentum distribution as the density is varied, we have plotted

in curve I of Figure 2 results for P(K) as given by Daniel and

Vosko for the high density values (re 1 2) and by (2.2.6) for

the low density region. Curve 2 for r* = 16 should be viewed

with some caution, but the result for re = 100 (curve 3) should

represent a good approximation. The great difficulty, as we

have stressed, is to obtain a sufficiently good approximation

to the ground state in the region 2 < r* a 5"5 and to locate

the critical value of r5 with precision.

17



3. Test of verturbation method for ca culating electron momentA

distribution (with D. Hilton)

Since the above work was completed, we have been concerned

about the possibility that the Daniel and Vosko theory of the

momentum distribution of a high density electron gas may no% be

physically correct. Thus, as they in fact point out, the

discontinuity in their momentum distribution may arise from

perturbation theory, because it is already present in the zeroth-

order problem.

In view of the importance of this question, we have sought

a soluable problem in which perturbation methods can be avoided,

and yet the electron momentum distribution can still be calculated.

It seems to us that there is a problem; not, unfortunately, closely

related to the correlation problem; which we can solve exactly,

in which a perturbation is applied to an electron gas. This is

the case of non-interacting electrons in a magnetic field, and

in view of the interest in the momentum distribution calculation

by a non-perturbative method, we discuss it in some detail below.

3.1 Bloch matrix and momentum distribution for non-interactina

electrons in a aaneetic field

As remarked previously, it is fairly clear that a momentum

distribution calculated by perturbation theory will contain a

discontinuity if the unperturbed solution does so. It is not,

18



however, clear that the exact solution will be discontinuous*

In order to investigate the exact solution for the problem of

free non-interacting electrons in the presence of a magnetic

field, we note that the exact Bloch density matrix has been given

by Sondheimer and Wilson (1951) for this case for an infinite

number of particles. It may be written in suitable units (the

magnetic field being in the Z-direction) as

C(r' 0) = f (0) exp-.- (x'y - y'x) - io) I(x-x') + (y-Y')'J

+ (z-z')'/10 (3.1.1)

where

g(P) -HKeoth HO and f(P) =-icosech HO.,

It is easily seen that when the magnetic field H tends to zero,

we recover the field free solution

-(r-r,)2'/4p
-•(Note that here the energy is

expressed in Rydbergs), (3.1.2)

We shall work with the quantity

Djj 0)C (3 -13)

where

O( ' ~) = f e~ ~ C ( C' -) dr d' (.1.4)

Then by use of the relation pointed out by March and Murray (1960)

19



O~iin c(Eo E (rl

we see that

-0+1= D.

Q 10 - JPq to ')ci f J o' p~ M--- . (3.1.6)

We must remark that it Is only in special cases as, for example,

whon the electrons are free, that Q (IS r,) is the momentum

distribution; we will return to this point later*

If we define the mixed matrix

C( E f) a C(,E'E 0) dr' (3.1.7)

it is easily seen that

D(j 0) = C(I Z 0) Eno (3.1.8)

We perform the transform (3.1.7) by use of the formula

f 8-tX 2 +2-xd eT/ P Re tO> (3.1.9)

and find that

c ~ r £O a) = -~ ~ ~ (kx2+ky)/gH/4g(x*+y2 eH(kyk x)ek~

(3.1 .10)

or

-coshE e O (3.1.11)

20



Now
No taH go as H -#0, and

lim cosh H = 1, so that
H40

lim D( ) = e-
H--4O

which is the correct answer. For we have for the momentum

distribution in this case

O+iC.

a -Ok 2 00J CIO-e~d. (3.1.12)

When k2 > t we close the contour by a semi-circle at

infinity in the right half-plane. The integrand

vanishes in this semi-circle, and since no

singularities are enelosed the R(k 4) vanishes.

On the other hand if k 2 < 4, the integrand vanishes

in a semi-circle at infinity in the left-half plane. However

the contour now encloses the singularity residue 1 at the origin.

Thus

O( ) .! e-Ok a 2eor I k2 < r
R 2 e d = , (3.1.13)

1 0 k2 >

0-i~e

the correct result for non-interacting electrens in the absence

of a magnetic field.

When the magnetic field is not zero, we have

21



QW -P~ j~dj' + w a -O(k z2-e ) -Cx ky2 ) / g~p) dQ(')'/'('X) =0 ' cosh H

i-i.

= 2U +100 2 a(r.-k z -H ) -_(kx'+kya )/g(P ) de (- 4

Again we close the contour by a semi-circle at infinity In the

right half plane. The integrand vanishes on this semi-circle

if

- kz 2 - H < 0.

Thus

Q4 4) - 0 if ks2 + H > . (3.1.15)

This result is at first sight a little surprising: we would

expect the discontinuity to persist in the z-direction, we

might also expect it to remain in the same place, i.e. k z =

when kx2 + k Y2 = 0, for the longitudinal motions of the electrons

are unaffected by a magnetic field. However, the result may be

explained by supposing electrons originally moving wholly in

the z-direction (that of the magnetic field) to jump into states

energetically more favourable and for which there are non-zero

components or momentum in directions transverse to the magnetic

field.

Evaluation of the integral (3.1.14) does not seem possible

when the equality in equation (3.1.15) does not hold, for there

are essential singularities of the integrand on the imaginary axis.
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We are thus compelled to proceed as follows. We put

C - k 2 - H; = (k x + ky ).

We now have

e+1W .- TI e(O+it) e" tan(t+io)

If 00e- tanHP) _ f-~~)~-2, (o+it)(1 - • - (0 lt) ,

0-ico -0

(3.1.16)

and we will attempt to prove this function continuous as a function

of n by showing that its derivative with respect to n exists and

is finite everywhere. To do so we take the derivative under the

integral sign. It may be noted that we have already interchanged

orders of integration: we have taken a Fourier transform before

the inverse Laplace transform. However, in that case, there is

less apparent danger than here, where we seek to prove the

derivative always bounded; for we must guarantee that if the

transform of the derivative is bounded, then so is the derivative

of the transform. We give an argument to justify our procedure

which can also be used, with the necessary changes, to Justify

changes of order of integration.

We note that the relation

can be made rigorous when C is a Dirichlet series; when there

is a finite number of particles, and the energy spectrum discrete.

We have the functions of the form
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p(F V1 , 'V(F. q) R i 1)0 (3.1.18)

cQ T1 0) Vi Z (C 1)O (3.119)

I rH(3 1  =1 - (3.1.20)

0 9 1>a

(The Bi are the one-particle energy levels).

Now when there is a finite number of particles, the allowed

values of momenta (and so 4 and -n) form a discrete set. We

must take finite differences:

AP (E n + h 4) - P( + 0(,,1Ap=" h • (3.1.21)

and obviously

L0AP • "0 dr = AC/P. (3.1.22)

Now having passed to the limit of an infinite number of particles,

we have a quasi-continuous function in -n, the limit of the sets of

functions obtained by joining neighbouring allowed values of n by

straight lines. For such a function, say P, the derivative is

well approximated to be the finite difference of p for a finite but

very large number of particles, i.e. if

PL =" PN' N the number of particles,

dPL
= lim APN.
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Such considerations must hold for both sides of equation (3.1.22).

Thus dC
a* dpL a-or d

Our problem now consists of proviiig the boundedness of

1t dan t(ia+t) .- a+ tC dr, (3.1.23)
(O+it) (i - •-2H( oC t)

We will use the second mean value theorem, which states that if

O(x) is a monotonic function, and f(x) any other function, then
b . b
'a O(x)f(x)dx = O(a) f f(x)dx + O(b) f(x)dx, a < 4 < b.

a (3.1.24)

Let us apply this theorem to the integral
I O+ieoo[ad where f(p) is periodic on the contour

=2 of integration, and has a finite mean value m.
0-ic.

We write

f(p) = m + g(O). Then

Ix + O+ lo+it) dt. (3.1.25)

It is now sufficient to consider

a and to show that it has an upper bound

fo + independent of a (we let a -. a.).
We put
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0+1t

We then see that the real part is monotonic and (3.1.124) can be

applied Immediately:

a 9(a) a
010 ' 10 a.t =J g(a+it)dt +~w r g(a+it)dt. (3.1.26)

Since g(o+it) Is periodic in t with mean value zero, we see that

the two integrals on the right are bounded and as a co the second

term on the right hand side goes to zero so that the upper bound

for the left hand side is independent of a for a very large. The

fact that C depends on a does not affect the argument because in

the first integral of the right hand side, we can simply choose

&(a) to make the integral a maximum, to obtain an upper bound. It

can be shown also that (a) tends to a constant as a -* ac.

As for the imaginary part of ' t we writeo+it
a xa

g(o+it)dt = J o;+Itt dt + a (G~it)t dt (3.1.27)f 0 a  ft 04 +tV
x

twhere x is chosen such that - is monotonic in the interval

(x, a). The first integral on the right hand side is obviously

finite and is independent of a, and the second integral may be

treated as before.

We have thus shown that if f(P) is bounded and periodic

on the contour of integration, the integral

O+io

- V -is bounded.

O-i'

We apply these observations to the integral (3.1.23). There



is a product of two periodic functions in the integrand. The

period of one depends on 4, and the period of the other on H.

The periods of both are independent of n. The product will

be periodic if 4 is adjusted such that the ratio of the two

periods is rational. It is therefore possible to state that:

For every value of 4 such that E/H is a rational number,

the derivative of Q(J r) with respect to n is bounded; i.e. for

such values of F, Q(J) has no discontinuities as a function of

kx and ky,

We note that we nan approach any point C, with a C obeying

the condition expressed in the last statement as close as we

please.

3.2 Difficulties of direct use of double Fourier transform of

Bloch matrix

Inspection of equation (3.1.10) makes it clear that the

second Fourier transform may be carried out by use of (3.1.9)

and one might therefore inquire why we have not simply carried

out the second transform instead of working with the quantity

D(k, ). The reason will now become clear, for we will examine

the consequence of such a procedure.

We note that Sondheimer and Wilson's expression is of the

form

C(E, C2 0) - f(H.rixr,) G(E,-a 0) (l = H ). (3.2.1)
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f is independent of OP so that on performing the inverse transform

we obtain

p(rjgr2 0) -=(M x r2) g(r, - Eu~. (3.2.2)

Now the momentum distribution is the diagonal element of

-ikjrj ikL,
P(11 P (,Cl E2) a dr.g dr (3.2.3)

We put

Then l E2) = Q(k) e dk) (3.2.4)

= (j, + k + k) Q(k) dk, (3.2.5)

where

F(i a =ff d k.r (3.2.6)

It can easily be shown that the diagonal element of the double

Fourier transform of a function of the form P(D.rj x r2) is

independent of kxand ky

F(I 1) = C 4(Iz) 6(k z), where C is some constant.

We therefore obtain

POS J1) = O(kC J Q(k1 k y k3) dk x dk y; C some constant.
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[The 8-function appears since we have taken a double Fourier

transform and so obtained the momentum distribution for all

electrons, and there are an infinite number of them.]

The resulting momentum distribution is constant in the

kx and ky directions. This is obviously physically incorrect.

We must expect that when magnitude of the magnetic field

is very small, the true momentum distribution approximates

closely to that of the electrons in the absence of the magnetic

field. How are we to explain this peculiarity of the Sondheimer

and Wilson solution?

We think the answer is as follows. Sondheimer and Wilson

avoid the troubles earlier workers encountered with boundary

conditions by working, not with a finite system, but with an

infinite one. They obtain the solution of the Bloch equation

H c(r .r A) + a (E' r0 ) = o (3.2.7)

with boundary condition

C(X' £ 0) = 8(E, -r) (3.2.8)

(H is the Hamiltonian)

and there can be no doubt that their solution is correct for the

infinite system. However, supposing Ci(r' r p) is the Bloch

matrix for N-particles, the momentum distribution in the limit

as N-+ = is the inverse Laplace transform of

29
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IkC;4 10)= .= .' d e•. (3.2.9)

Volume of

system

In taking a double Fourier transform of the S-W solution we

have reversed order of integration and limiting process, and

this appears to be the reason why we obtain an unphysical answers

(It should be noticed that the limiting process here is of a

different nature to the one we make on equation (3.1.22). Here

limits of integration vary as we vary the number of particles).

In working with the mixed matrix C(k E p) we have avoided

these difficulties. Analogous to (3.2.7), the mixed matrix

obeys the equation

RE C(I IP) + X ( ) = 0 (3.2.10)

with boundary condition

il.r
c(]s1£ 0) - a• W (3.2.il)

and it can be readily verified that the quantity defined by

equation (3.1.10) satisfies equations (3.2.10) and (3.2.11).

3.3 Relation to Van Hove's conjecture on use of perturbation

theory

In concluding this discussion, we shall refer to a conjecture

by Van Hove (1959) which has only recently come to our attention.

Van Hove has suggested that whereas it is known that with
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attractive potentials the zeroth order Fermi distribution cannot

be used to generate tne correct solution when the interactions

are switched on, the same might also be true for repulsive

interact ions.

While we are not able to draw a decisive conelusion about

the correlation problem from our work above, we can say with

certainty that in the kx and ky directions the momentum

distribution does not have a discontinuity. However, while we

note that, if generated by perturbation theory, we can expect

such a discontinuity to be preserved, it should be pointed out

that the perturbative treatment leads to a pathological result

in this case. We do feel however that our ability to carry

through the calculation of the momentum distribution exactly

in this case is of considerable theoretical interest. We are

also of the opinion that the result may have practical significance

and we are at present planning the numerical calculation of the

momentum distribution in the presence of a magnetic field.

Compton effect studies or positton annihilation experiments in

the presence of a magnetid field may prove illuminating in the

future.
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4, Va'riatival second-order density matrices built from

two-bodr ogitals

We have so far discussed chiefly the extreme limits of

weak and strong coupling. Unfortunately, the methods used

there are not adequate for the zange of intermediate coupling,

and we therefore turn our attention at this point to more general

consideration of the form of the second-order density matrix.

All evidence seems to us to point to the fact that this quantity

affords the best available tool for dealing with many-body

problems in which only two-body forces operate.
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4.1 Discussion of necessary and sufficient conditions for

variational validity of second-order density matrices

In this section we shall formulate necessary and sufficient

conditions such that a many-body wave function expanded in terms

of orthonormal two-body orbitals 10., (r r.) shall be antisymmetric.

These in particular provide necessary conditions that the type

of second order density matrix suggested by Young and March (1960),

viz:

4=1

(where 2N is the number of particles) shall be derivable from

an antisymmetric many body wave function. In §4.3 it will be

shown that with the particular form of orbitals chosen by Young

and March in method (B) of their paper (which method is at first

sight the more promising of the two they propose, since it

reduces to the correct Hartree-Fock solution in the high density

limit) the conditions cannot be satisfied, at least in one

dimension.

We will also discuss the question of the sufficiency of the

conditions on the orthonormal orbitals 104 (r1rA)I for density

matrices of the type displayed in equation (4.1.1) to be derivable

from an antisymmetric wave function. The sufficiency follows

from an assertion by Bopp (1959), of which Coleman (unpublished

work; 1961) has questioned the validity and has claimed to have
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produced a counter example, Beth the lacuna In Bopp' a argument

and Coleman's counter-example will be examined in §4,2,

We take a complete set of two-body orthornormal orbitals

(to be referred to as geinals) l$4(E'p.1)I and expand the

antisymmetric wave function for 2N particles in terns of then:

V'E29N) C4404 2I3400 ZNiM-122N

it (4-1i.2)

C441oo Nmust be invariant under permutation of 4..4Nand

also

C (C~ 2 =

The second order density matrix is

r(E1'r2'IE1E2) = (4.1.3)

=N(2N - 1), (4.1.4)

where

One can see that a,,, = a.* - the matrix (a,,,) is Hermitian;

it is thus diagonalisable and there exis geminals err)I
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which we shall call natural geminals, such that

r(EI'ra'IgrEj) : Zb E(E 'r ') *6(.'ita) (4.1 5)

Now the antisymmetry requirement

( )  - Y(r,..r2N)

implies that

Z j#,(rE g) + *,(Erj)j = 0 (all 42143...CNj)
41 (4.1.6)

and the requirement

e(££2£3,4 ..•)= - T(E,£ E4• .)

implies that

c . *e4N 1E2) ( , )* 3E4) + *,,(r r3)*& .,:r4 )1 = 061 42a.."

(all 130..,LN) (4.1.7)

Equations (4.1.6) and (4.1.7) are necessary and sufficient

conditions that the expansion in equation (4.1.2) is an allowable

many-body wave function. If the expansion is in terms of the

natural geminals, equation (4.1.6) is replaced by

=() , - 04(E2!,) (all 4). (4.1.8)

Let us now consider a density matrix formed from a finite

number of geminals,

, ' - , , (E ,')%(£ ). (4.1.9)
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The same orbitala, and no others orthogonal to them appear

in the wave function, since we have

TI I C 414204NI 2 0,O 41 > K.

Hence

( L C4 c.. YC 4 (1,Qra)....Iw (Q2NjE) (4..10)

£1eN

Conditions (4.1.6) and (4.1.7), where now there is an upper

limit K on the summations, form necessary conditions that we can

choose a matrix of the form (4.1.9). For particular choice of

a.#., however, the conditions are not proved to be sufficient.

In particular, if we take N(2N - 1) antisymmetrie orbitals and

prove that an antisymmetric wave function for 2N particles may

be expanded wholly in terms of them, we have still not proved

that these orbitals are natural geminals and so the density

matrix is of the Young-March form (equation (4.1.1)).

However, Bopp (1959) states that there is an upper bound

to the a :

0 a4 4  1 (4.1.11)

If equation (4.1.11) is true, then it is easily seen that the

second order density matrix for an antisymmetric wave function

formed from N(2N - 1) geminals must be of the Young-March form.
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However, equation (4.1.11) is not established beyond doubt, and

thus will now be discussed.

4.2 BOnD'S assertion and Coleman's counter example

Referring to the expansion of the second order density matrix

in terms of natural geminals, (equation (4.1.5)) it can readily

be shown that if

0 b C 1, (42.1)

then this also holds for the diagonal elements of the matrix

in any other representation (that is, equation (4.1.11) is also

true).

Let us write the many body wave function as

V = n n (n) (4.2.2)

n K

where is the set of natural germinal.,
21

UK(n) Uk (n) (i) (K labelling the configuration

i =.3k...k2

and the Uk(n) are orthenermal and defined by the integral equation

f # (13) #(23) Uk(n)(2) d(23) = Xk(n) Uk(n) (1).

We now antis muetize Uk(n) and so form a nermalised determinant

Dk(n) (3...2N) by whiekwe replace uk(n) in equation (4.2.2)o

We now have a produet

#n (12) Dk(n) (3..2N). We antisymmetize this
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and again noraliee, obtaining a function

XX (n) (19, p,...,2 ).

Now Bopp gives an upper bound for the bn:

,' Z. 1< * XK(n) >12 (4.2.3)

K

which he replaces by

bn 4.

It is easily seen that this last equation immediately follows

if

< Xk, Xk >=8 k,k. (4.2.4)

It can be shown that

On(12) Z aft Ua 6 (n) (1) UM,(n ) (2) (4.2.5)

4m.

where = 0

and if a6, 0, then

Icp =0 all p # a (4.2.6)

aqm =0 all q 0 4.

Thus apart from a normalisation factor XK is equal to

I p a,,. U,(n) (1) U3 (n) (2) Uk, (3) ... Uk2(2N) (4.2.7)
p 2.

Consider a second function X This is,

I p aa U,~ (n) (1) U (n) (2) UK (3) ... UI, (2N).42)
p 6m
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where pp is the antsyumetrisation operator.

p

Now if the products Uk (n)andF U t(n)

kiP3 XI=3

differ by more than two functions Uk(n), it is easy to see that

<X" xi X . 0 (4.2.9)

Also, If the two products only differ by one function then by

condition (4.2.6) equation (4.2.9) again holds.

However, if the products differ by Just two functions, say

Ujc, (3) # Uk3 (3)

Ux4(4) # Uk.(4)

then < XK X > can be seen to be proportional to

1Ws.4 k 3 k4  kak4 1'.34

This expression will usually be zero because of condition

(4.2.6), but not always. Thus equation (4.2.1) does not

Immediately follow from equation (4.2.3), and in fact Coleman

claim a counter example to equation (4.2.1) which we now examine.

First we derive the expression for the upper bound for bn which

Coleman uses, examining the conditions carefully.

Let [Qn| be a set of geuinals, and expand the wave function

an

• (12 ... Z) C On (12) Xn(34 .. 1I) (11 . 2N) (4.2.10)
n
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with < OaOn > = 61M P < )cn 

and If

< X& X > = m 8, the on are the natural geminals.

The density matrix is

r(t'2' 112) = E On C n #a (1 12 f) #n(12) < X. a >

an

Thus if and only if the On are natural geminals,

ann a 12 11 (= _ 1).

We may then derive an upper bound for ann = bn:

bn = Ian12 = I< On(12)Xn(3..M)I!(12..M) > 1
2

= i< 0 n XnJAI > n2

(A being the normalised antisymmetrization

operator for M particles). This is also

2 b

(M -_ 11: I=< VAI n Xn > 12 4 < On XnIAIn Xn)

The equality will only hold provided

V a Alo n Xnl.

Now Coleman takes a 4-particle wave function of the form

T(1234) = 1 [0(12)0(34)j. (g some normalisation constant)

and shows that with a suitable choice of orbital 0(12),

< 0(12) 0(3)1A1O(12) 0(34) >

can be made arbitrarily close to 113, where Bopp's upper bound is I/6.
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However, we have remarked that the bound for ann only holds if

#n is a natural geminal, and this is what Coleman must assume

for his counter example to be valid. However, he fails to prove

that the orbitals he chooses are natural geminals, and without

such a proof his counter example cannot be accepted.

We therefore conclude by remarking that neither condition

(4.2.1) nor Coleman's counter example is beyond doubt, so that we

cannot provide conditions which we definitely know to be sufficient

for the variational validity of matrices of the form suggested by

Young and March. In view of the suggestive and promising nature

of the form expressed in equation (4.1.1), further work in this

direction would obviously be valuable.

4.3 Two Body Bloch Orbitals

To introduce the Wigner lattice of the low density limit we

will take the two body functions to be

C k(rjr2) = V(k1+%Ilka+Kn ) e l ~ ' ) £  i k + ) £

(4.3.1)

where the are reciprocal lattice vectors.

When the number of particles becomes very large, the many body

wave function (Q1Ea..1-M) is approximated to by

dk q2 .€ ... II C(jjXLk]! F) 4j .. NI.1 ISj ( E)., ~]l(r rll

siB (4.*2)
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(5 in the volume of the Brillouin sone).

Now we must antisymmetrize in p. and r., etc. We can do this

by aking
-(,, .. - c(,,I.. (i..3.3)

(here and below the unspecified indices are assumed to take any

value, provided we impose the condition

v(j 1 X2) - v(k I k,) (4.3.4)

Equation (4.1.7) becomes

dj qdL, k,k C(Xk N lo.)V(j,+Emjj2km)v(k +k l X4)

E f dOdWd2~ al ,I xEAn B i~k,+Km)..r, iC ,+%).r, i(]1,+1,L).q (.+E~V),-E4

kA'n FB idkd+%).E i~2K.)r (3L)r ik+K )E

-i (K, +P) Ej -' (4 -+ b -i+ ) E3

Multiplying both sides by e e e

-I " ( ' K KO) " E4

x e .and integrating over all space, we obtain

6-functions, giving

C (III 1JSS V. )(K, +is,152 +6)-V(143 +jU I S- +4

- - C(jjf43Ija- .. )v(,I +ial,+K.)v(,+&Il fs+K) (4.3.5)

Now for one-dimension the functions proposed by Young and March

obey equations (4.3.1) and (4e3.4) if we force periodicity In ki

and k2 (although this is not essential to the argument, only

affecting the precise nature of the labelling of the v(11 kS)
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with %and % ) for, putting y(x) - p(x) + x, p a periodic

function, the above author's functions (equation (5.2) of their

paper) may be rewritten

Oki ka(XI X2) I~ (kk.(xi xa) *kki(sxi)

with

, - i(kl-k2)P(Xl-Xa) aikza ikaxg

(4.3.6)

It will be seen that this is of such a form that

v(k, Kalk. ) - 0. Ka + Kb o.

Hence from equation (4.3.5)

C(ktklkk41 ..)v(k1+Kalk2-K )v(k3+Klk4-K ) = 0

unless Ka =Ka-

Now if we are to obtain a second order density matrix of form

(4.1.1), then we must be able to find for a given k, k2 (kl~k2 )

a value of K. and values of k3 k4 ... k2N such that

c(kkslk. I..)v(ks3Zalk4K.) # 0.

But then

v(ki+K5ak2-Ka) - 0 unless a - Ka.

This shows *kk, to be simply a product of two plane waves,

which result must hold for all ki, ka. We have thus shown that

method (B) of the Young-March scheme in one dimension is only

variationally valid when it reduces to the Eartree-Fock result

43



(the wave function then being simply a determinant of plane

waves).

It must be remarked that Young and hrch were unable to prove

the satisfaction of the Pauli conditions on the first order

density matrix in their method (B). However, it in known that

satisfaction of the Pauli conditions does not ensure a

variationally valid scheme, and it would appear that we must

ensure the existence of a wave function directly. Nevertheless,

the above example shows that it may not be necessary to explicitly

build up the wave funetion to examine the validity of particular

trial forms of the two-body orbitals of equation (4.1.1).
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5. Localibed orbital method (with B. Darby)

We turn now to discuss an explicit method of setting up a

trial second-order density matrix. No really accurate form

for the whole range of electron densities has, as yet, been

found, but the method outlined here should be valid for densities

which are not too highs

5.1 12rat and seeond-order matrices

The energy of the uniform system of any density may be

written as

RV~~~~~(. I.1)Q'1'"n.d

where the energy is in atomic units, and

,r e ,

ra being the mean interparticle spacing, and y(E'E) and the

pair function P(Z'E) are for a gas of uniform density. We

take for the paramagnetic gas

2r(giza' rIE2) Z a(Zm'-E1-R) a(E,1.,-Rn) (5.1.2)

The A. are vectors of a body-centred lattice, and the prime on

the summation sign indicates that 1 n = 0 is exiluded, a(Z) is

a Wnnier function for a simple cubic lattice (the b.c. lattice
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being made up of two of the simple cubic lattices) which has

nodes at all the lattice points of the simple cubio lattice.

We form the first order density matrix from

= f r(r ,' , £.)E. (5.1.3)

We write

) ( ik e .

is the Brillouin zone for the simple cubic lattice (the vectors

of which we shall denote by S n). Inserting (5.1.4) in (5.1.3)

and letting N -c o we obtain

813ik. (£, -E)
Y(Ei r2) -: 7f v(k) I  e ( )

The kinetic energy is therefore given by

y~rr) E =- - -,,,- fdq f v(k) a dk,

so that kinetic energy per particle is

Tm -2 PV f V(j) 1 2 k2 dk

which maybsjritten

I am
T Mr - a()V1 a(E) dC (5.1.5).

It may be noted that we antomatically satisfy the Pauli condition

that the occupation numbers are less than one,

o i a(k) 1,
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in

and this normalises to unity over the unit cell:

in

Hence

v() ( f everwhere.

For the potential eneru, since P(par) =P)r-r), we obtain

per particle

low

2P(F,) la Z I. .U)I

In

We therefore have

* , [ Ej'f a(E"
)I 'VI~ m f i (5.1.6)

fin 19-Sn'
Hence the potential enery is just that of the orbital ajk).

centred at the origin in the fields of point charges, one at

every other lattice site (the term will be ignored below,

47



cancelled by the self energy of the uniform background chage).

If we form the periodic potential

v() - 1 (5.1.7)

in

we may write the total energy per particle as

1 - XT f a a .+ Jv() a() dr.-

(5.1.8)

where we have taken the mean value of V(,) as zero. This is

of no consequence when we seek Ruler equations with particular

trial forms of a(r) such as the one we now examine.

5.2 The Macke Trsnsforned Wannier Functions

In order to generalize the scheme outlined above, we

replace the functions a(r) by Macke-transformed simple cubic

Wannier functions, given by:-

(xY,z,)i ax(X) ay(Y) a z(Z) - ji g(R) (5.2.1)

Here X = X(x), Y = Y(y), Z = Z(z), and we restrict these

transformations so that X,(x+S x) - XI(x); XI(x) . X(-x).

Further X, = dX/dx; X2 = d2X/dx2, etc., and the simple cubic

Wannier function ax Is defined by

I(X) eikX dk

BB5

11 and SIB are respectively the volumes of the unit cell for the
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simple cubic lattice, which has vectors 8 . and the Brillouin

zone for the same lattice,, and are thus related through:-

M1% - BX

It is convenient to quote here certain summation rules

fr the simple cubic Wannier fw~ctions. Defining the length

b by 21B 8ba we have

Z (-n -dl (EiS,) dx~rn -n~

Zn d x -d~ &cQ(-I) Adx' (EC-n)

§n Sn

311 (5.2.2)

These will be needed in obtaining Ruler equations, but before

we do this, we must see what energy expression (501.8) becomes

when we replace a(r) by the transformed function (5,2.1).

The kinetic energy term consists of an integral over all

space, the x-component of the integrand of which is 3uatt

Y 1 0~1 QysZ2 a5  - _ 1i71 + a8.ak2xXXj] + cian x#

where a ' &x /dx, etc. Similar ters hold for the y and z
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components. Now since X(x) is periodic in the lattice, we may

replace the integral over all space by a sum of integrals over

one zone, and then employing the summation rules (5.2.2) we

obtain for the kinetic energy per partiole:-

2--- - X, YZ, q + similar terms for y and
z components.

(5.2.3)

In order to obtain an Euler equation we require the energy to

be in the form of an integral over all space, and thus we

introduce the first of the summation rules (5.2.2) into (5.2.3),

obtaining: -

-1 1 XI bX3]y1Z, cz(r)cx(r)&r +similar terms forJVZ (y and z components.
All space

Replacing a(r) by the transformed functions (5.2.1) in the

Potential energy part of (5.1.8), we obtain

dr [V(I) - YIZIXI as(R) a(R)

All space

= V'(r)XgY,Z1  r X1YjZ, cxn~c(R)dr

All space

Here V'(X) is a localised potential. Again using the first

summation rule of (5.2.2) on the first term we obtain finally

for the potential energy per particle:-
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* V(E)XiYIzI aK(p)a(E)dE - Z f i X1Y1 Z, aa(g)a(R)d.r

All space All space (5.2.5)

The total energy per particle, using Macke transformed

simple cubic Wannier functions in this scheme, is thus given

by the sun of (5,2,4) and (5.2.5). We proceed now to obtain

the Euler equations for the transformation functions X,YZ.

Functions satisfying these equations will give the lowest bound

of the energy as given by (5.2.4) and (5.2.5).

5.3 The Buler lauations

If we write the energy of our system in the form

e J I(XYZXI,Y 1, 1 ,,.X2,Y2 Z)dxdYdz

All space

then the functins XY,Z making e a minimum satisfy the Euler

equations for our -.A The variations in X,Y,Z must be

considered separately, and in particular, for the variations in

X we have:-
SO O Go

axe O dx Ifdy fdz 8 I

OD -00 -0

Assuming I to be zero at the limits x - we may write

I fds & a0 (5.3.1)

51



An X -o X + 6X; X, -* X, + 6XI ; X2 - Xa + 6X2 . thus:-

6x1 = J X+ 6X, +&..6X.

Further

6X dr dy f dzi- (8L[6C ~f J- 8 X dr

By our previous assumptions the first term on the R.H.S. is zero

Similarly

-X2 d- 6Xa

Now since 6X is arbitary, the integrand with respect to X must

vanish for all X, (but only X) so that (5.3.1) becomes

dy a P - J + a = 0 (5.3.2)

Similar expressions hold for variations with respect to Y and Z, but

here we will confine our attention to those with respect to X,

the Ruler equation for Y and Z being obtained by changing the

variables in a cyclic way.

In evaluating (5.3.2) it is convenient to consider the

kinetic and potential energy terms separately. For the kinetic

energy part, I is the integrand of (5.2.4). Evaluating the

derivatives and combining terms we have for the kinetic enezgy

contribution to the Euler equation:-
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+ 2aX (Xa 2 X2 2 b2I- W Y177 IZ T

The infinite integrals may now be written as sums of

integrals over the sides of the simple cubic unit cell. Since

we have only two integrations we obtain a sum Z BY7 ,S5  where

8 ,Sz are the y and z components of Sn respectively. In order

to use the summation rules (5.2.2) it is convenient to introduce

a further summation, over 8x, but it should be noted that this

now has to be carried throughout the working. Using the

summation rules we obtain

+ a + Yd Zldz (5.3.3)
-a -a

where a is defined by l = 8a 3 .

Using expression (5.2.5) we find that the potential energy

term contributes

* fAyf dXY y,, I(2 (1) J L "'n ~ V(s)
06 O

- v(g) 2a(S) a*()

For the terms involving V(s), the infinite Integrals can again
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by replaced by sams of integrals over the sides of the unit

cell, and to allow use of (5.2.2), and for consistency with

(5.3.3) we sum over 8x. Thus we obtain:-
a~ a OfDfdz

dy dz Y,V(E) + d zYZakRSJ
a -( -534)

The Euler equation for X is now obtained by putting the sum 6f

(5.3.3) and (5.3.4) equal to zero. Before doing this we note

that if we choose the density of our system, y

I h3 k 3
=

equal to unity, then we find:-

n = 2; a= 2-; b = %2-4

Then we have:-
a a

f Ydz a, = a= 2'
-a -a

Finally, since X1YjZj are assumed to have the same functional

form, F say, we may generalize the above terms for X, and obtain

for our transformation function F the Euler equation;-

8x [ G) +2WTx)

Zffdz P, (z) 2 IF(0 ICP(Z~a ~24F(x) - m 0

; 0-~ 00 (y)F1 (z )*+y*+E

(5.3.5)
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This equation gives the best transformation functions F.

It may be observed that in the limits of high and low densities;

F(x) = x gives the plane wave result in the limit X -* 0, and

-F, (X) 8 6(x - RXi) is a solution in the limit X

i Work is proceeding on the detailed properties

of the solution of these Euler equations.
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6. Non-uniform electron ams (with S. aNUMnthr)

So far, we have considered the influence of correlation

effects in a uniform electron gas. Unfortunately, this

Sommerfeld model neglects certain features which are of central

importance in the theory of metals, and in particular averages

out the periodic potential due to the Ions to a constant value.

Very recently, Bellemana and Do Lecner (1961) have reported

a many-body approach to the non-uniform gas problem. Their

results, which were simply quoted without proof, have apparently

been obtained by expanding the grand partition function of the

system in powers of the coupling parameter between electrons and

the positive (point) ions and between pairs of electrons. By

summing infinite series of divergent terms, they were able to

obtain finite results for the energy per particle. We show

below that, by finding Dirac's density matrix in a self-

consistent framework, we obtain a result which Is closely

connected to their final energy formula. Indeed, this may

be obtained almost at once for our theory, if we add the

Gellann-Bruaeckner correlation energy for a high density uniform

gas to the energy calculated from our approach.
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6.1 jaera and Dirac densiy U tr"ix of a non-uniform electron gas

We shall consider the problem of electrons moving in a

periodic lattice of protons, in order to circumvent at present

the difficulties of introducing Hartree fields associated with

inner electrons, and for the conduction electrons we shall

adopt essentially a Hartree description, We first write down

the diagonal element p(j) of Dirac's density matrix, +a first

order in the Hartree periodic potential V(1), using the density

matrix perturbatie. theory of March and Murray (1961). If Xf

is the magnitude f the wave-vector at the Fermi surface, and if

we use atomic mnits tkroaghout, we have them

Pf Ti 7 i, (6.- ;,1I

where 3i(P) a (en P - p orn p)/p' cm 2 w see frem (6.1.1)

that the constant density pe = kf 3 /3*A ia modulated by the

peiPedic density cerrection, which we denote by pi a We now

introduce the Pesurier compenents V(;) of the Hartree potential

V(1), tbiu

V(#) Z V() i(2na ) (6.1.2)

cn

where the Z are reciprocal-lattice vectors, and we impose self-

consistency through the Poisson equation,

v( ) " % 60r - i ) "X )
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.9P o (6.1.3)

where the tn denote vectors in the direct lattice and L is the

volume of the unit cell* Hence, substituting (6.1.1) and (6.1.2)

in (6.1.3) and using the result that

J(kf,~ P' = J7 diet a rig

t + f -n (6.14)

we find

V # 0, (6.1.5)

0, n - 0. (6.1.6)

This result, combined with (6.1.1) and (6.1.2), defines the

self-oonsistent electron density in this approximation.

We next write down the potential energy U in the Hartree

approximation. If VN and Ve denote the potentials due to the

nuclei and the electronic charge distribution respectively, then

V = V, + V. and it may readily be shown from the full Hamiltonian

that the potential energy is given by

U - Ul + f £ p VN + i f a p Ve (6.1.7)

where UNZ is the Coulomb interaction energy of the unscreened
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protons; the second term is the electron-nuclear interaction

energy and the third the electron-electron potential energy.

Separating off the Madelung energy of the proton lattice in a

uniform baekgreund of electrons with density Po, we may rewrite

(6.1.7) in the torm

U mU Madelung + Jd? p 1 () Vi +f dO pl(l) VM(M (6.1.8)

where we have used the fact that J dI p1 ( ) = 0. To obtain the

total energy 3 we must add the kinetic energy contribution, which

in the density-matrix perturbation-theory has been given by

Corless and March (1961) as

T + f ditid02 V(11 ) V -
2)

x , o(v3 ), (6.1.9)
(k 2- j11)

where ;ne first term is the usual Fermi energy for free electrons.

Rewriting (6.1.9) in terms of p, defined from (6.1.1), it is

immediately seen that the second term in (6.1.9) cancels the

second term in (6.1.8) when we form E = T + U. Thus we find

I r, * Uxa4l g * " f dP Pi () VN(Vt). (6.1.10)

The last twa ean be evaluated by using the Fourier-series form

of P, and the fact that VN(It) is a sum of Coulomb potentials over

59



the lattice sites. The contribution from this term to the

energy per particle may then be readily obtained as

n

Adding the usual exchange and correlation energies to the

Hartree energy derived above, we obtain the result of Bellemans

and De Leener if the Fourier components V('n) in (6.1.11) are

replaced by the unscreened Coulomb values 4zf/3 3 n . Our

result appears to have more direct physical significance in that

screening is included from the outset.
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6.2 Discussion of natural spin orbitals

A complete set of Bloch functions $ki(E)J will be defined

by the expressions (for an infinite crystal)

Q)= E a(E)eit.% (6.2.1)
in

J a(riu-)a1(E-R)dr = 61 10. ). (6.2.2)

All space

It follows thatJ j' 1(,)12 dr = I - the normalisation is independent

of I.

Now

5() ( V)dr a f a 1 .j) a- Wn 6 0-

All space AmAn

i.e.

f , , , . , - 2B "ij T 64 1 - to +,.). (6.2.3)

All space

y(EE'), when defined for a finite crystal, will obey

periodic boundary conditions analogous to those Imposed on the

one particle Bloch functions. These foro a complete set so that
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y(£' *£) may be expnAded in terms of them over the domain of the

crystal. We shall treat tke infinite crystal case. We weits

Y(ElX d-, Z ~ cj(jt.js)*~ 11(rD), Is (X). (6.2. 4 )

To obtain the natural orbitals we must diagonalize Ct ,ke).

We shall show it to be already diagonal in j0

Equation (6.2.4) only requires Cij(ki,ka) to be defined

when 11 and Ia lie within the Brillouin zone. However, we &hall

for mathematical convenience take it doubly periodic in the sense

C c1%(X, jk . (6.2.5)

Our results will follow from the imposition of the

periodicity condition expressing the arbitrariness of origin in

the orystalt

' .- r('.). (6.2.6)

We define the mixed matrix

() = •r ) 0 (6.2.7)

All space

Thus

F i+(' +(r)+R reR i)

i.e.

(= (s( E)a (6.2.8)
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Now since r(ic,w) is shown to be an eigenfunotion, elgenvalue

a 00 f the treaslation operator Tp

Let us aow write,

Ia eqpation (6.2.3). We see that

- 8 ~ l C (C1 ,k) v M (,C)

(i £) Q) 8a l C(w sk)Vi'( ) ,().

Multiply through by *0( ) and integrate over all space.

(6.2.3) shows that

or' c(0) ZIUSI 'C-"IA awl,~ci(.~

Intrating Over the Bwllouln seas with respect to and puttiag
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C 8,S Z C 3 (,S) Vi(E)" (6.2.10)

1

It should be noted that equation (6.2.5) implies the

periodicity of Ctj(S):

-t " i ( Ct3(K). (6.2.11)

Our expression for T(i,E) may now be rewritten as

-8%3~ ZC W v mos) J-,

Hence

-ic. r' r,-1. r'
-(", X 8wC,~ &S C PO 1(, 53pO- ft

ij

ioe.

(Er) f Cij()4 (')* 3 (E)d" (6.2.12)

Let us conoider the effect of applying a unitary

transformat4.on

= a = I a ( )aj6(k)

where

a aki ()ai 6 () = aik'(j) ai,(!) = 6k, independent of k

I I

and also define
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- Z ants(k)*kn(r); 0 kI() ak) k(r)

n m

Then

Z I ),f (k - r)4()d

K4 i j"
Mn

= f ij(1)6jnCi *5m(C')*nEd
I jkt

We now prove that the set Aconsists or Bloch functions

by forming

and deumonstrating that

All space
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We have

nEBn RV

- Z~f~ikf OR

x a.6 0e- ' 'R anp'(611)e L ' ' R  aM(Q-An-Rm)an(Q-RV-R,)dr

Z .f k '., amg(ji)a '10&2)e -Ve
-% -

Or

f ~ ~ ~ ~ k (aRc~rEd = dM ef ,,' -., ,, , . f T, ei-(n ) a k)~',

"B m

" e iki (n-RM)?P

The assertion is proved.

Now we note that because of the essential equivalence of

k and I + K, a&45 (k) can be taken as periodic in k.

We see that 104i()j ie a set of Bloch functions for all

unitary transformations, including that making Ci3 (k) diagonal.
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Thus

T(E' ,E) ZI ci( ), i x( E ) *i( E ) d ;

i "B

and the natural orbitals [r( are Bloch functions.

To summarize, we can write

y(E',r) d I i1f dX11 ci(91t12) a J(* (r,)

where Itki| is a complete set of Bloch functions.

19k ,k is shown to be diagonal with respect to k, and

12 by consideration of the mixed matrix y(w,r) which is such that

( a eS•' n - (iE).

We show that if we apply unitary transformations (ak6(k) to the

(Ci 3 (QS)) we obtain the nt Z 2 ain()* n I which are shown
n

to be Bloch functions.

The occupation numbers of the natural orbitals we obtained

by applying unitary transformations diagonalising the (Ci 3 (k)).

The natt.eal orbitals, obtainable by the same unitary

transformation muast therefore be Bloch functions.

67

II



References

Bellemane, A. and do Leener, M., 1961, Phys. Rev. Letters, 6, 603.

Bopp, P., 1959, Z. Phys., 156, 348.

Carr, W. J., 1961, Phys. Rev., 122, 1437.

Coldwell-Horsfall, R. and Maradudin, A., 1960, J. Math. Phys.

1, 395.

Corless, G. K. and March, N. H., 1961, Phil. Nag., 6, 1285.

Daniel, E. and Vesko, S. H., 1960, Phys. Rev., 120, 2041.

Hubbard, J., 1957, Prec. Roy. Soc. A, 240, 539; 243, 336.

Kanazawa, H. and Watabe, M., 1960, Prog. Theor. Phys., 23, 408.

Klein, A. and Prange, R., 1958, Phys. Rev., 112, 994.

Maeke, W., 1950, Z. Naturforech, 5a, 192.

March, N. H. and Murray, A. M., 1960, Phys. Rev., 120, 830.

1961, Proe. Roy. See. A, 261, 119.

Mareh, N. H. and Young, W. H., 1959, Phil. Mag., 4, 384.

Mayer, J. E., 1955, Phys. Rev., 100, 1579.

Sondheimer, B. H. and Wilson, A. H., 1951, Proc. Roy. Soe., A 210,

173.

Van Hove, L., 1959, Physiea, Vol. 26, Congress on Many Particle

Problems, Utrecht, 200-203.

Wigner, E. P., 1938, Trans. Par. Soc., 34, 678.

Young, W. H. and March, N. H., 1960, Proc. Roy. Soo., A, 256, 62.

68



4J 4J~l 004' 4

u I~ f S.44004

U aO* -H 0

U) F4 0 In4.'V) U)-0 V 4)J

$2n. 0- .o U, ~.*H4
to 0 - 0. I 4' 0 4-o (

.0 l~ 2 0 0 4 . :, (0 u 1
fd - -4 1 E - 0 .0I4)

.3 0 0.4) r-I 4. .)4F)

( 0V . m,

u 0 .4 * .. O 4'4)0O4r

4) w E 4 )

0 0 . t 4 4j 4-0V 'U

4) O *-4 .- 4 1 E r. 0,-
r-I 4)Z -q > H0 0

- ---- 4--L - f a Hr


